2  L12: Constant-Coefficients Homogeneous Linear Equations (5.2)

2.1 Constant-Coefficients Homogeneous Linear Equations

\[ a_2y''+a_1y'+a_0y=0\]

2.2 Sol for \(2^{nd}\)-order linear homogenous const. coeff.

Definition

The standard form of a homogeneous linear second-order equation is given by

\[y''+py'+qy=0\] Assume a solution of the form \[\boxed{y=e^{rx}}\] where \(r\) is to be determined.

\[\Rightarrow r^2e^{rx}+pre^{rx}+qe^{rx}=0\] \[\Rightarrow r^2+pr+q=0\qquad\text{(Characteristic equation)}\]

\[\Rightarrow r_{1,2}=\frac{-p\pm\sqrt{p^2-4q}}{2}\]

General Solution 2OLHCC

Theorem 2.1 (General Solution 2OLHCC) If \(p^2-4q>0\) then \(y''+py'+qy=0\) has a general solution:

\[\boxed{y=c_1e^{r_1x}+c_2e^{r_2x}}\] where \(r_{1,2}=\frac{-p\pm\sqrt{p^2-4q}}{2}\)

2.2.1 Example 2 real roots

Solve \[3y''+12y'+6y=0\]

\[\Rightarrow y''+4y'+2y=0\]

Characteristic equation: \[r^2+4r+2=0\] \[r_{1,2}=\frac{-4\pm\sqrt{16-8}}{2}=-2\pm\sqrt{2}\]

\[\Rightarrow \boxed{y=c_1e^{(-2+\sqrt{2})x}+c_2e^{(-2-\sqrt{2})x}}\]

2.3 What if complex roots?

2.3.1 Euler’s Identity

Euler’s Identity

\[e^{i\theta}=\cos\theta+i\sin\theta\]

2.3.2 General Solution

General Solution 2OLHCCIm

Theorem 2.2 (General Solution 2OLHCCIm) If \(r_1=\alpha+i\beta\) and \(r_2=\alpha-i\beta\) are complex roots to the characteristic equation of \[y''+py'+q=0\] Then the general solution is given by \[\boxed{y=e^{\alpha x}(c_1\cos(\beta x)+c_2\sin(\beta x))}\]

2.3.3 Proof

Proof. Two solutions:

\[y_1=e^{(\alpha+i\beta)x}=e^{\alpha x}(\cos(\beta x)+i\sin(\beta x))\] \[y_2=e^{(\alpha-i\beta)x}=e^{\alpha x}(\cos(\beta x)-i\sin(\beta x))\]

By the superposition principle:

\[y_1^* =\frac{1}{2}(y_1+y_2)=e^{\alpha x}\cos(\beta x)\] \[y_2^* =\frac{1}{2i}(y_1-y_2)=e^{\alpha x}\sin(\beta x)\] are solutions.

These solutions are linearly independent. Thus a general solution is given by \[ y=e^{\alpha x}(c_1\cos(\beta x)+c_2\sin(\beta x))\] \[\square\]

2.4 Repeated root case

2.4.1 General Solution

General solution 2OLHCCRR

Theorem 2.3 (\(p^2-4q=0\)) If \(m\) is a double root of the characteristic equation \[r^2+pr+q=0\] Then \[y''+py'+qy=0\] has a general solution

\[\boxed{y=c_1e^{mx}+c_2xe^{mx}}\]

2.4.2 Proof

\[\boxed{p^2-4q=0}\]

\[\Rightarrow r=-p/2=m\qquad\text{then }\qquad y=e^{mx}\text{ is a solution}\]

but we need two solutions! \[\cdots\]

Suppose \(y=u(x)e^{mx}\) is a solution.1

What are the conditions for \(u(x)\)?

\[y''+py'+qy=0 \qquad\Leftrightarrow \qquad [y''-2my'+m^2y=0]\] \[\Rightarrow y'=u(x)me^{mx}+u'(x)e^{mx}\] \[\Rightarrow y''=u(x)m^2e^{mx}+2mu'(x)e^{mx}+u''(x)e^{mx}\] \[\cdots\]

\[u''(x)=0\Rightarrow u(x)=Cx+D\] Choose \[u(x)=x \Rightarrow y=xe^{mx}\] is also a solution.

SUMMARY

Theorem 2.4 Let \(p(r)=ar^2+br+c\) be the characteristic polynomial of \[ay''+by'+cy=0\]

Then:

  1. If \(p(r)=0\) has distinct real roots \(r_1\) and \(r_2\), then the general solution is: \[\boxed{y=c_1e^{r_1x}+c_2e^{r_2x}}\]

  2. If \(p(r)=0\) has repeated roots \(r_1\), then the general solution is: \[\boxed{y=e^{r_1x}(c_1+c_2x)}\]

  3. If \(p(r)=0\) has complex conjugate roots \(r_1=\alpha+i\beta\) and \(r_2=\alpha−i\beta\) (where \(\beta>0\)), then the general solution is:

\[\boxed{y=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x)}\]

2.5 More examples (if times allows)

Find the general solution:

  1. \(y''+5y'−6y=0\)
  2. \(y''−4y'+5y=0\)
  3. \(y''+8y'+7y=0\)
  4. \(y''−4y'+4y=0\)
  5. \(y''+2y'+10y=0\)

2.6 References

  1. https://quarto.org/docs/authoring/cross-references.html#theorems-and-proofs
  2. https://quarto.org/docs/presentations/revealjs/advanced.html
  3. https://quarto.org/docs/presentations/revealjs/presenting.html#chalkboard
  4. LibreTexts, 5.2: Constant Coefficient Homogeneous Equations from William F. Trench.

  1. magic?↩︎