7 L7: Exact Equations (2.5)
7.1 Definition: pre-Exact Equations
A potential function
\(F(x,y)\) is a function of two independent variables.
For a fixed constant \(C\), the level curves
(equipotential curves) \[F(x,y)=C\] represent the points in the \(x,y\) plane with the same potential \(C\).
The total differential
of \(F(x,y)\) is1
\[ dF =\frac{\partial F}{\partial x}\,dx+\frac{\partial F}{\partial y}\,dy \]
7.1.1 Level curves
7.1.2 Example (Level Newbie)
Find the total differential of
\[F(x,y)= x^2+xy+y^2\]
\[dF =(2x+y)\,dx+(x+2y)\,dy\]
7.1.3 Note:
What is total differential for a level curve? Can I calculate \(dy/dx\) from an implicit
If we are on a level curve: \[\Rightarrow F(x,y)=C\]
\[\begin{align} \Rightarrow \\ dF &=\frac{\partial F}{\partial x}\,dx+\frac{\partial F}{\partial y}\,dy=0\\ \Rightarrow \\\\ \frac{dy}{dx}&= -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}\\ &=g(x,y) \end{align}\]
provided \(\frac{\partial F}{\partial y}\neq 0\)
7.2 Definition: exact diffQ
If a function \(F(x,y)\) exist such that \[ \frac{\partial F}{\partial x}=M(x,y)\quad\text{and}\quad\frac{\partial F}{\partial y}=N(x,y)\] then \[M(x,y)\,dx+N(x,y)\,dy=0\] is said to be an exact diffyQ
2
7.3 Test for exactness
\[M(x,y)\,dx+N(x,y)\,dy=0\] is exact if and only if3
\[\boxed{\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}}\]
7.4 Method for non-separable, non-linear:
For solving diffyQ of the form
\[\frac{dy}{dx}=g(x,y)\] If \[dF=0\Rightarrow\]
\[ \frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{M(x,y)}{N(x,y)}\]
\[\boxed{M(x,y)\,dx+N(x,y)\,dy=0}\]
\[\boxed{\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}}\]
\[\frac{\partial F}{\partial x}=M(x,y)\] \[\Rightarrow \boxed{F(x,y)=\int M(x,y)\,dx+\phi(y)}\]
We know that: \[\frac{\partial F}{\partial y}=N(x,y)\] from 3) we know how much if \(F\), then
\[N=\frac{\partial}{\partial y}\left(\int M(x,y)\,dx+\phi(y)\right)\] \[\phi'(y)=N-\frac{\partial}{\partial y}\left(\int M(x,y)\,dx\right)\]
Therefore:
\[\boxed{\phi(y)=\int \left[N-\frac{\partial}{\partial y}\left(\int M\,dx\right)\right]\,dy}\]
\[\boxed{F(x,y)=C}\]
7.5 Example step by step
Solve: \[\frac{dy}{dx}=\frac{e^y+x}{e^{2y}-xe^y} \]
Sol:5
\[M(x,y)=F_x =e^y+x\] \[N(x,y)=-F_y =-(e^{2y}-xe^y)=xe^y-e^{2y}\]
\[(e^y+x)\,dx+(xe^y-e^{2y})\,dy=0\]
Exact? \[M_y=N_x\,?\] \[M_y=e^y,\quad N_x=e^y\] Then \[\checkmark\]
\[\frac{\partial F}{\partial x}=M=e^y+x\] \[F=\int (e^y+x)\,dx +\phi(y)\] \[F=xe^y+\frac{x^2}{2} +\phi(y)\]
\[\frac{\partial F}{\partial y}=N=xe^y-e^{2y}\] Then
\[xe^y-e^{2y}= \frac{\partial }{\partial y}\left(xe^y+\frac{x^2}{2} +\phi(y)\right)\]
\[xe^y-e^{2y}= xe^y+0+\phi'(y)\] \[\phi'(y)=-e^{2y}\] \[\phi(y)=-\frac{e^{2y}}{2}\]
- Implicit solution:
\[F(x,y)=xe^y+\frac{x^2}{2}-\frac{e^{2y}}{2}=C\]
7.6 References
- Khan: Exact diffyQ Example 1 https://youtu.be/Pb04ntcDJcQ
- Khan: Exact diffyQ Example 2 https://youtu.be/utQi1ZhF__Q
- Khan: Exact diffyQ Example 3 https://youtu.be/eu_GFuU7tLI
- Wiki: Exact diffyQ https://en.wikipedia.org/wiki/Exact_differential_equation
- Wiki: Second partial derivatives https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivative-and-gradient-articles/a/second-partial-derivatives
true for well behave functions, \(\Delta z \approx dz = F_x(x,y)dx+F_y(x,y)dy\)↩︎
if we are on a level curve should not exist a change on height.(\(F=C \rightarrow dF=0\))↩︎
If \(F_{xy}\) and \(F_{yx}\) are continuous then the mix partial derivatives are equal(\(F_{xy}=F_{yx}\))↩︎
\(F_{yx}=F_{xy}\) ?↩︎
\(F_x\equiv \frac{\partial F}{\partial x}\)↩︎